-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector_field.py
319 lines (277 loc) · 11.3 KB
/
vector_field.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import numpy as np
import os
import itertools as it
from PIL import Image
import random
from manimlib.constants import *
from manimlib.animation.composition import AnimationGroup
from manimlib.animation.indication import ShowPassingFlash
from manimlib.mobject.geometry import Vector
from manimlib.mobject.types.vectorized_mobject import VGroup
from manimlib.mobject.types.vectorized_mobject import VMobject
from manimlib.utils.bezier import inverse_interpolate
from manimlib.utils.bezier import interpolate
from manimlib.utils.color import color_to_rgb
from manimlib.utils.color import rgb_to_color
from manimlib.utils.config_ops import digest_config
from manimlib.utils.rate_functions import linear
from manimlib.utils.simple_functions import sigmoid
from manimlib.utils.space_ops import get_norm
# from manimlib.utils.space_ops import normalize
DEFAULT_SCALAR_FIELD_COLORS = [BLUE_E, GREEN, YELLOW, RED]
def get_colored_background_image(scalar_field_func,
number_to_rgb_func,
pixel_height=DEFAULT_PIXEL_HEIGHT,
pixel_width=DEFAULT_PIXEL_WIDTH):
ph = pixel_height
pw = pixel_width
fw = FRAME_WIDTH
fh = FRAME_HEIGHT
points_array = np.zeros((ph, pw, 3))
x_array = np.linspace(-fw / 2, fw / 2, pw)
x_array = x_array.reshape((1, len(x_array)))
x_array = x_array.repeat(ph, axis=0)
y_array = np.linspace(fh / 2, -fh / 2, ph)
y_array = y_array.reshape((len(y_array), 1))
y_array.repeat(pw, axis=1)
points_array[:, :, 0] = x_array
points_array[:, :, 1] = y_array
scalars = np.apply_along_axis(scalar_field_func, 2, points_array)
rgb_array = number_to_rgb_func(scalars.flatten()).reshape((ph, pw, 3))
return Image.fromarray((rgb_array * 255).astype('uint8'))
def get_rgb_gradient_function(
min_value=0,
max_value=1,
colors=[BLUE, RED],
flip_alphas=True, # Why?
):
rgbs = np.array(list(map(color_to_rgb, colors)))
def func(values):
alphas = inverse_interpolate(min_value, max_value, np.array(values))
alphas = np.clip(alphas, 0, 1)
# if flip_alphas:
# alphas = 1 - alphas
scaled_alphas = alphas * (len(rgbs) - 1)
indices = scaled_alphas.astype(int)
next_indices = np.clip(indices + 1, 0, len(rgbs) - 1)
inter_alphas = scaled_alphas % 1
inter_alphas = inter_alphas.repeat(3).reshape((len(indices), 3))
result = interpolate(rgbs[indices], rgbs[next_indices], inter_alphas)
return result
return func
def get_color_field_image_file(scalar_func,
min_value=0,
max_value=2,
colors=DEFAULT_SCALAR_FIELD_COLORS):
# try_hash
np.random.seed(0)
sample_inputs = 5 * np.random.random(size=(10, 3)) - 10
sample_outputs = np.apply_along_axis(scalar_func, 1, sample_inputs)
func_hash = hash(
str(min_value) + str(max_value) + str(colors) + str(sample_outputs))
file_name = "%d.png" % func_hash
full_path = os.path.join(RASTER_IMAGE_DIR, file_name)
if not os.path.exists(full_path):
print("Rendering color field image " + str(func_hash))
rgb_gradient_func = get_rgb_gradient_function(min_value=min_value,
max_value=max_value,
colors=colors)
image = get_colored_background_image(scalar_func, rgb_gradient_func)
image.save(full_path)
return full_path
def move_along_vector_field(mobject, func):
mobject.add_updater(lambda m, dt: m.shift(func(m.get_center()) * dt))
return mobject
def move_submobjects_along_vector_field(mobject, func):
def apply_nudge(mob, dt):
for submob in mob:
x, y = submob.get_center()[:2]
if abs(x) < FRAME_WIDTH and abs(y) < FRAME_HEIGHT:
submob.shift(func(submob.get_center()) * dt)
mobject.add_updater(apply_nudge)
return mobject
def move_points_along_vector_field(mobject, func):
def apply_nudge(self, dt):
self.mobject.apply_function(lambda p: p + func(p) * dt)
mobject.add_updater(apply_nudge)
return mobject
# Mobjects
class VectorField(VGroup):
CONFIG = {
"delta_x": 0.5,
"delta_y": 0.5,
"x_min": int(np.floor(-FRAME_WIDTH / 2)),
"x_max": int(np.ceil(FRAME_WIDTH / 2)),
"y_min": int(np.floor(-FRAME_HEIGHT / 2)),
"y_max": int(np.ceil(FRAME_HEIGHT / 2)),
"min_magnitude": 0,
"max_magnitude": 2,
"colors": DEFAULT_SCALAR_FIELD_COLORS,
# Takes in actual norm, spits out displayed norm
"length_func": lambda norm: 0.45 * sigmoid(norm),
"opacity": 1.0,
"vector_config": {},
}
def __init__(self, func, **kwargs):
VGroup.__init__(self, **kwargs)
self.func = func
self.rgb_gradient_function = get_rgb_gradient_function(
self.min_magnitude,
self.max_magnitude,
self.colors,
flip_alphas=False)
x_range = np.arange(self.x_min, self.x_max + self.delta_x,
self.delta_x)
y_range = np.arange(self.y_min, self.y_max + self.delta_y,
self.delta_y)
for x, y in it.product(x_range, y_range):
point = x * RIGHT + y * UP
self.add(self.get_vector(point))
self.set_opacity(self.opacity)
def get_vector(self, point, **kwargs):
output = np.array(self.func(point))
norm = get_norm(output)
if norm == 0:
output *= 0
else:
output *= self.length_func(norm) / norm
vector_config = dict(self.vector_config)
vector_config.update(kwargs)
vect = Vector(output, **vector_config)
vect.shift(point)
fill_color = rgb_to_color(
self.rgb_gradient_function(np.array([norm]))[0])
vect.set_color(fill_color)
return vect
class StreamLines(VGroup):
CONFIG = {
# TODO, this is an awkward way to inherit
# defaults to a method.
"start_points_generator_config": {},
# Config for choosing start points
"x_min": -8,
"x_max": 8,
"y_min": -5,
"y_max": 5,
"delta_x": 0.5,
"delta_y": 0.5,
"n_repeats": 1,
"noise_factor": None,
# Config for drawing lines
"dt": 0.05,
"virtual_time": 3,
"n_anchors_per_line": 100,
"stroke_width": 1,
"stroke_color": WHITE,
"color_by_arc_length": True,
# Min and max arc lengths meant to define
# the color range, should color_by_arc_length be True
"min_arc_length": 0,
"max_arc_length": 12,
"color_by_magnitude": False,
# Min and max magnitudes meant to define
# the color range, should color_by_magnitude be True
"min_magnitude": 0.5,
"max_magnitude": 1.5,
"colors": DEFAULT_SCALAR_FIELD_COLORS,
"cutoff_norm": 15,
}
def __init__(self, func, **kwargs):
VGroup.__init__(self, **kwargs)
self.func = func
dt = self.dt
start_points = self.get_start_points(
**self.start_points_generator_config)
for point in start_points:
points = [point]
for t in np.arange(0, self.virtual_time, dt):
last_point = points[-1]
points.append(last_point + dt * func(last_point))
if get_norm(last_point) > self.cutoff_norm:
break
line = VMobject()
step = max(1, int(len(points) / self.n_anchors_per_line))
line.set_points_smoothly(points[::step])
self.add(line)
self.set_stroke(self.stroke_color, self.stroke_width)
if self.color_by_arc_length:
len_to_rgb = get_rgb_gradient_function(
self.min_arc_length,
self.max_arc_length,
colors=self.colors,
)
for line in self:
arc_length = line.get_arc_length()
rgb = len_to_rgb([arc_length])[0]
color = rgb_to_color(rgb)
line.set_color(color)
elif self.color_by_magnitude:
image_file = get_color_field_image_file(
lambda p: get_norm(func(p)),
min_value=self.min_magnitude,
max_value=self.max_magnitude,
colors=self.colors,
)
self.color_using_background_image(image_file)
def get_start_points(self):
x_min = self.x_min
x_max = self.x_max
y_min = self.y_min
y_max = self.y_max
delta_x = self.delta_x
delta_y = self.delta_y
n_repeats = self.n_repeats
noise_factor = self.noise_factor
if noise_factor is None:
noise_factor = delta_y / 2
return np.array([
x * RIGHT + y * UP + noise_factor * np.random.random(3)
for n in range(n_repeats)
for x in np.arange(x_min, x_max + delta_x, delta_x)
for y in np.arange(y_min, y_max + delta_y, delta_y)
])
# TODO: Make it so that you can have a group of stream_lines
# varying in response to a changing vector field, and still
# animate the resulting flow
class ShowPassingFlashWithThinningStrokeWidth(AnimationGroup):
CONFIG = {"n_segments": 10, "time_width": 0.1, "remover": True}
def __init__(self, vmobject, **kwargs):
digest_config(self, kwargs)
max_stroke_width = vmobject.get_stroke_width()
max_time_width = kwargs.pop("time_width", self.time_width)
AnimationGroup.__init__(
self, *[
ShowPassingFlash(
vmobject.deepcopy().set_stroke(width=stroke_width),
time_width=time_width,
**kwargs) for stroke_width, time_width in zip(
np.linspace(0, max_stroke_width, self.n_segments),
np.linspace(max_time_width, 0, self.n_segments))
])
# TODO, this is untested after turning it from a
# ContinualAnimation into a VGroup
class AnimatedStreamLines(VGroup):
CONFIG = {
"lag_range": 4,
"line_anim_class": ShowPassingFlash,
"line_anim_config": {
"run_time": 4,
"rate_func": linear,
"time_width": 0.3,
},
}
def __init__(self, stream_lines, **kwargs):
VGroup.__init__(self, **kwargs)
self.stream_lines = stream_lines
for line in stream_lines:
line.anim = self.line_anim_class(line, **self.line_anim_config)
line.anim.begin()
line.time = -self.lag_range * random.random()
self.add(line.anim.mobject)
self.add_updater(lambda m, dt: m.update(dt))
def update(self, dt):
stream_lines = self.stream_lines
for line in stream_lines:
line.time += dt
adjusted_time = max(line.time, 0) % line.anim.run_time
line.anim.update(adjusted_time / line.anim.run_time)