-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3D_LSQ.py
42 lines (29 loc) · 1.23 KB
/
3D_LSQ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d as m3d
# Generate some data that lies along a line
x = np.mgrid[-2:5:120j]
y = np.mgrid[1:9:120j]
z = np.mgrid[-5:3:120j]
data = np.concatenate((x[:, np.newaxis], y[:, np.newaxis], z[:, np.newaxis]),
axis=1)
# Perturb with some Gaussian noise
data += np.random.normal(size=data.shape) * 0.4
# Calculate the mean of the points, i.e. the 'center' of the cloud
datamean = data.mean(axis=0)
# Do an SVD on the mean-centered data.
uu, dd, vv = np.linalg.svd(data - datamean)
# Now vv[0] contains the first principal component, i.e. the direction
# vector of the 'best fit' line in the least squares sense.
# Now generate some points along this best fit line, for plotting.
# I use -7, 7 since the spread of the data is roughly 14
# and we want it to have mean 0 (like the points we did
# the svd on). Also, it's a straight line, so we only need 2 points.
linepts = vv[0] * np.mgrid[-7:7:2j][:, np.newaxis]
# shift by the mean to get the line in the right place
linepts += datamean
# Verify that everything looks right.
ax = m3d.Axes3D(plt.figure())
ax.scatter3D(*data.T)
ax.plot3D(*linepts.T)
plt.show()